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We present a new method for computing NMR chemical shifts and magnetic susceptibilities in extended
systems through an ab initio density functional perturbation theory approach. The method is applicable to
crystalline and amorphous insulators under periodic boundary conditions, as well as to isolated molecules.
The formalism exploits the exponentially decaying nature of localized Wannier orbitals. We have implemented
the method in the context of a plane wave pseudopotential approach. The results are in good agreement with
experiment and with calculations that use other theoretical methods.

I. Introduction

Nuclear magnetic resonance (NMR) is one of the most
powerful experimental methods in structural chemistry. The
quantities extracted from NMR spectra, in particular chemical
shifts, are widely used to characterize the chemical environment
of individual atoms. Coordination numbers, bond types, and
even bonding distances and angles can be obtained by analyzing
the resonance lines of the nuclear spins. Many empirical rules
exist to relate chemical shifts to these properties, but they fail
whenever subtle quantum effects are involved.

Thus, the ab initio calculation of chemical shifts has become
more and more popular, and over the years, many methods have
been developed in the quantum chemistry community to perform
such computations. A good review of the various approaches
and recent developments in this field is given in ref 1. One
major problem that appears in these calculations is the choice
of the gauge. While being in principle a cyclic variable, gauge
can significantly affect the results in an actual calculation. To
minimize this effect, several solutions have been proposed: in
the GIAO method (gauge-including atomic orbitals2), one
transforms the gauge of the basis set functions to the position
of their nuclei, whereas in the IGLO method (individual gauges
for localized orbitals3), the gauges of the final wave functions
are transformed to their centers of charge. The CSGT method
(continuous set of gauge transformations4) finally defines a
gauge which depends on the position where the induced current
is to be calculated.

However, there is another issue that restricts the applicability
of the existing implementations of these methods to isolated
systems. The Hamiltonian, which represents the magnetic field,
contains the position operator. In an extended system, which
would typically be treated under periodic boundary conditions,
this operator is ill-defined. In particular, this position operator
and therefore the perturbation Hamiltonian operator do not have
any periodicity, as would be required for periodic boundary
conditions.

Recently, a new formalism has been presented which allows
the calculation of chemical shifts and other magnetic properties

in extended systems using periodic boundary conditions.5,6 This
formulation is based on a magnetic field which is modulated in
space. To return to the experimental situation of a homogene-
ous field, the limit of infinite modulation wavelength is evalu-
ated numerically. This is done using a small, but finite
wavevector.

We propose an alternative method for extended systems in
periodic boundary conditions. We take advantage of the
exponential decay properties of localized Wannier orbitals7,8 and
treat these localized orbitals as virtually isolated. For the gauge
problem, a particular variant of the CSGT method mentioned
above4 is adapted to our situation and applied to these localized
orbitals.

The implementation we present is based on density functional
theory (DFT)9-11 in combination with gradient-corrected ex-
change correlation energy functionals. We use a pseudopotential
plane wave representation of the electronic structure in the
frozen core approximation. This allows the efficient calculation
of large systems and, in combination with molecular dynamics,
good statistical sampling.

The results agree well with the existing calculations as well
as with experiment.

II. Chemical Shifts and Susceptibilities

When a magnetic field is applied to a medium, it induces a
current due to the modification of the electronic ground state.
This electronic current distribution induces an additional inho-
mogeneous magnetic field. The chemical shift tensor is defined
as the proportionality factor between the induced and the
externally applied magnetic field at the positions of the nuclei:

The induced field is determined by the total electronic current
j (r ) through

where µ0 is the permeability of the vacuum. Since in our
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approach the system is treated under periodic boundary condi-
tions, the current density will be periodic and we can calculate
eq 2 in reciprocal space from the Fourier transform of the
current:

TheG ) 0 component of the field depends on the bulk magnetic
susceptibility tensor,ø, and the shape of the sample:

In the case of a spherical system, the prefactorκ is given byκ

) 2/3. The bulk susceptibilityø can also be expressed as a
function of the orbital electronic current as

where the integral is done over one unit cell of volumeΩ. A
single cell is sufficient since the integral is invariant under
translations of any lattice vectorRL because of

and

Therefore, the integral over the complete sample can be written
as the sum of integrals over unit cells, and all these integrals
are equal. The molar susceptibility is related toø throughøm )
ΩNLø with the Avogadro numberNL.

The standard procedure to obtain the orbital electronic current
densityj is perturbation theory. The fieldB is represented by a
vector potentialA satisfyingB ) ∇ × A(r ). A typical choice
for A in the case of a homogeneous magnetic field is

with a cyclic variableR, the gauge origin. The effect of this
additional degree of freedom will be discussed in Section III.
The perturbation Hamiltonians at first and second order in the
field strength are given by

with the momentum operatorp and the chargee and massm of
the electron. The first-order perturbation gives rise to a
correction in the electronic ground state with respect to the
unperturbed system:

This correctionæ(1) is responsible for the induced current, which
can be obtained as

III. The Gauge Origin Problem

The current density, eq 12, written in terms of the orbital
contributionsj k, can be separated into the so-called dia- and
paramagnetic terms:

Both contributions individually depend on the gauge, whereas
the total currentj is gauge-independent. However, the two
contributions are large numbers and have opposite signs. For
our choice of the vector potential, eq 8,A(r ) is linear in the
gauge originR. Therefore, the diamagnetic currentj k

d grows
linearly in R, andj k

p must compensate for this in order to fulfill
the invariance of the total current.

Thus, for large distances|r - R|, the current densityj results
from the cancellation of two large terms, making the actual
calculation rather challenging. In a computer simulation using
a finite basis set, the gauge invariance ofj is no longer
numerically verified.

Over the years, many techniques have been developed to
minimize this problem for isolated molecules.2-4 Our goal is
to calculate magnetic properties in a periodic system. In this
context, the probably most natural approach is the so-called “R
) r ” variant of the CSGT method.4 For each pointr ′ in space,
the current density is calculated with the gauge originR being
set equal tor ′. This method makes the diamagnetic part vanish
analytically:

such that cancellations of large numbers no longer occur.
In practice, the current is computed as

Here, |æk
r×p〉 and |æk

p〉 are the first-order perturbation wave
functions for the special perturbation Hamiltonians:

This formulation avoids actually calculating distinct wave
functionsæ(1) for each pointr ′ in space. Denoting the perturba-
tion theory Green’s function (see also Section V for details):

we can formally express the first-order perturbation wave
functions for an arbitrary perturbation operatorO as

whereO is eitherp or r × p. By expanding eq 19 in the basis
of the unperturbed unoccupied orbitals, one would obtain the
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well-known sum-over-states expression for the first-order
perturbation wave function.

We do not use this Green’s function formulation in the actual
calculation, but rather perform a variational energy minimization
(see Section V). Equation 19 serves only as a compact notation
to obtain a closed expression for the current density:

In this formulation, it becomes apparent that any simultaneous
translation of the relative origin for the operatorr and the gauge
R ) r ′ automatically cancel each other out. In particular, the
current is invariant under arbitrary orbital-specific translations
dl:

This formulation looks somewhat similar to the well-known
IGLO gauge transformation (individual gauges for localized
orbitals3), but it is not the same. Our physical gauge is always
theR ) r ′ version of the CSGT method. However, this gauge
still leaves the freedom to translate the coordinate system
individually for each orbital, according to eq 21. This will turn
out to be useful in the following section.

A straightforward application of eq 21 would be too
expensive. In fact, it would require one inversion of the
Hamiltonian per real space mesh pointr ′. Such an operation
has approximately the cost of a total energy calculation, which
leads to a prohibitive computational effort.

We note however, that the second term ofj k can be rewritten
as

where

The evaluation of the first term of eq 22 can be done at the
computational cost of one total energy calculation, while∆j k

requires one such calculation per electronic statek.
At first sight, the sum∆j ) ∑k∆j k seems to be equal to zero,

since the inner operator is antisymmetric ink, l. But since the
momentum operators in eq 23 do not commute with the Green’s
function,∆j does not vanish unless alldl are equal. However,
we shall show that in most circumstances,∆j can be neglected.

IV. The Position Operator Problem

The formalism described so far is straightforward to use in
isolated systems, whereas the extension to periodic systems is

problematic. The position operator which figures in the pertur-
bation Hamiltonian, eq 9, is not well defined for an infinite
system.

A possible solution to this problem has been proposed and
applied by Mauri et al.5,6,15-18 (MPL). They replace the
homogeneous magnetic fieldB by a modulated one,B(r ) ) B0

cos q‚r , with a finite wavevectorq. Consequently, also the
perturbation Hamiltonian becomesq-periodic and therefore well-
defined for an extended system. The physically relevant case
B(r ) ) B0 is obtained by doing a numerical differentiation with
a small, but nonzero value forq and-q, and the response wave
functions have to be complex even in theΓ only sampling of
the Brillouin zone.

However, the method shows that it is feasible to compute
NMR chemical shifts of periodic and amorphous systems with
good accuracy using a pseudopotential plane-wave approach.

We propose a different approach. Instead of transforming the
homogeneous magnetic field to a periodic one, we define a new
periodic position operator.

We first localize the wave functions by means of a unitary
rotation in the occupied subspace. This is a technique well-
known in quantum chemistry, where it is used to determine the
location and the nature of chemical bonds. The rotation is chosen
such that the spatial extension of the wave functions is minimal,
yielding so-called maximally localized Wannier functions.7 The
extension is characterized by the second moment∆2 of the
orbitals:

In a periodic system, special care is required to define the
position operator properly. A solution to this problem in terms
of a Berry phase approach19 has been given by Mazari et al.20

A practical scheme to calculate maximally localized Wannier
orbitals has recently been presented by Berghold et al.21 It can
be shown that in an insulator, the resulting localized wave
functions decay exponentially.8 If the unit cell is chosen such
that the lattice parameter is larger than the decay length, the
orbital is significantly different from zero only within a limited
region of the cell, and it practically vanishes everywhere else.

The next step is to assign individual virtual cells to these
Wannier orbitals. The virtual cells are chosen such that for the
corresponding wave function, the cell walls are located in that
region of space where the orbital density is close to zero over
a certain range. Then, the position operator is defined normally
running from-L/2 to +L/2 inside the virtual cell. At the walls,
it makes a smooth transition back from+L/2 to -L/2, yielding
a saw-tooth shape (see Figure 1). This jump is not sharp in
order to avoid components of very high frequency in the
operator. As a consequence of this definition, the position

Figure 1. Two localized orbitalsΨa(x), Ψb(x) with specific position
operatorsra(x), rb(x).
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operator now matches the periodic boundary conditions, since
it is identical in every virtual cell and all its replica.

Again, we wish to stress that we have not transformed the
orbital’s gauge. Had we done so, we would have found
additional terms in the perturbation Hamiltonian and the wave
function orthonormality relations, as in the IGLO method. The
crucial difference is that we do not use individual orbital gauge
origins; the gauge is always “R ) r ′”. Instead, we define an
individual reference system for bothr andR simultaneously,
as described by the relative originsdk in eq 21.

The problem that arises for this construction is that the new
operator has a completely unphysical shape around the borders
of the virtual cell, where it makes its jump (atx ) nL). But by
choosing the virtual cells as described above, the unphysical
transitions lie in those regions of space where the wave function
vanishes. As a consequence, the problematic part of the operator
is only applied where it has no effect anyway.

Hence, the saw-tooth shape of the position operator as
indicated by Figure 1 is a reasonable approximation as long as
the wave functions are sufficiently localized.

However, this represents a certain restriction for this method.
We require that the decay length be significantly smaller than
the lattice constant of the simulation box, as mentioned above.
Only in such a case can the virtual cell be chosen with its borders
in a region of vanishing density. It follows that for a system
with truly delocalized orbitals, like a metal, our approach is
not applicable. In such a system, the decay of the Wannier
orbitals is only algebraic, and the necessary cell size would far
exceed the computationally tractable volume. One would have
to resort to the MPL approach, using a k-point sampling of the
Brillouin zone.

V. Density Functional Perturbation Theory

We have implemented our method in the framework of
density functional perturbation theory (DFPT) using a recently
published variational approach.12 The derivation has strong
analogies with other variational schemes used in quantum
chemistry. In particular, we note the similarity of our approach
to the stationary perturbation theory by Kutzelnigg13 which is
used in the IGLO implementation. We start from a functional
for the second-order energy of the system which is variational
in the first-order perturbation wave functionsæ(1):

In this expression, the operatorH (0) is the traditional KS ground-
state Hamiltonian with its eigenvaluesεk

(0). H (1) is the first-
order perturbation Hamiltonian andEHxc is the Hartree, exchange
and correlation energy functional.

The wave functionsæ(0) andæ(1) are the zero and first-order
expansions of the KS orbitals in powers of the perturbation
parameter, respectively. They also define the first-order density:

The orthonormality of the total wave functions, expanded to
first order in the perturbation, yields

This is achieved by imposing a general orthogonality condition
on the first-order perturbation wave functions:

The variational energy expression, eq 25, is valid for canonical
orbitals, i.e., eigenfunctions of the KS Hamiltonian. The
generalization to an arbitrary set of wave functions spanning
the occupied subspace is straightforward. The only modification
is that the KS energiesεk must be replaced by the matrix
elements of the KS-Hamiltonian:

Then, eq 25 becomes

The second-order energy is variational in the first-order
perturbation wave functions, under the orthogonality constraint
of eq 28:

In our case, the perturbation is a magnetic field. The energy
functional simplifies considerably because the first-order density
analytically vanishes everywhere. The reason is that the
perturbation Hamiltonian and the first-order wave functions are
purely imaginary, and thus, the two terms in eq 26 cancel each
other out. The matrix element of the magnetic perturbation
Hamiltonian, eq 9, in the position representation is given by

It is purely imaginary, so that with real wave functions and a
neccessarily real energy, eq 25, the first-order orbitalsæk

(1)

must be purely imaginary, too. Hence, the first-order density,
eq 26, vanishes analytically for magnetic perturbations, and the
energy functional, eq 30, simplifies to

The stationarity condition on the energy, eq 29, can be written
as an inhomogeneous system of coupled equations for theæk

(1):

This equation could be formally inverted using Green’s function,
eq 18. In our implementation, however, eq 34 is solved directly
using a conjugate-gradient minimization algorithm.12 Its com-
putational cost is essentially equal to that of a total energy
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calculation. No wave functions of unoccupied states are required,
in contrast to sum-over-states techniques.

VI. Pseudopotential Correction

Our implementation is based on a representation in plane
waves. We model the interaction between valence and core
electrons by pseudopotentials. Therefore, no core orbital is taken
into account, and the valence wave functions have an incorrect
shape in the core region. The chemical shift is extremely
sensitive to precisely that region of space, because the interaction
between nuclear spin and current is proportional to 1/r2. Thus,
it is not clear a priori whether a pseudopotential implementation
can give meaningful results at all.

Often, the contribution of the core orbitals to the chemical
shift is almost constant with respect to the chemical environment
of the atom. In the recent investigation of Gregor et al.,22 it has
been shown that this property can be exploited to correct for
the frozen-core approximation. A simple additive constant is
sufficient to reproduce the all-electron shieldings satisfactorily
in many cases.

VII. Application to Isolated Molecules

A. Convergence of the Chemical Shift.Our method has
been implemented in CPMD,23 a DFT pseudopotential suite of
programs based on a plane-wave (PW) representation. Using a
supercell technique, we have applied our method to isolated
molecules to validate the approach and the implementation.

For all molecules, the experimental geometries have been
used.24 As discussed in section VI, the carbon shifts need to be
corrected for the core contribution through a semiempirical
additive constant. The constant was taken to be the difference
between our valence-electron shielding and the experimental
shielding29 for tetramethylsilane (TMS). We use pseudopoten-
tials of Goedecker et al.25 with a BLYP gradient corrected
functional,26,27 and a unit cell of size (20 au)3.

As a first test, we have investigated the convergence
properties of our results with the plane wave cutoffEc. This
cutoff determines the size of the basis set, which is mathemati-
cally complete atEc f ∞. At standard values of 50-70 Ry,
this limit is not reached, even within the frozen core approxima-
tion. However, the electronic structure is usually well reproduced
by that point. The convergence of the chemical shifts with the
wave function cutoff is shown in Figures 2 and 3 for a
representative set of small organic molecules in the gas phase.

The extrapolation of the chemical shift of the isolated
molecules to infinite cutoff (Ec

-1 f 0) shows that a good
convergence is already reached at a typical value of 70-90 Ry.
The convergence error is in the range of about 0.2 ppm for
hydrogen and a few ppm for carbon.

Another approximation is the finite size of the unit cell in
our calculation. To check the influence of the interaction
between a molecule and its periodic replica, we have also studied
the convergence with the cell volume with a PW cutoff fixed
at Ec ) 70 Ry (Figure 4). Obviously, the standard cell size of
(20 au)3 mentioned above is enough to eliminate the influence
of neighboring cells.

B. Comparison with Experiment. We compare our extrapo-
lated results for a representative set of small organic molecules
with the values calculated with the Gaussian 94 package,28 with
the MPL results6 and with experiment (Figures 5and 6). In ref
15, only carbon shifts relative to TMS are given. They were
converted to an absolute scale using the experimental value for
TMS σTMS

C ) 188.1 ppm. Experimental shieldings have been
taken from ref 29. The Gaussian calculation was done in DFT
using the CSGT method,4 the BLYP exchange-correlation
functiona,l26,27 and a 6-311G(3df,3pd) basis set.

In the case of an isolated system, we can perform the
calculation imposing that the virtual cells are all equal (dk ) dl

∀ k, l), which makes∆j k ) 0 in eq 23. In Figures 5 and 6, this
exact calculation is compared with the approximation∆j k ) 0

Figure 2. Convergence of1H shielding with cutoff. Figure 3. Convergence of13C shielding with cutoff.

Figure 4. Convergence of1H shielding with cell volume.
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in the case of different virtual cells, wheredk * dl. In both
cases, the results are extrapolated to infinite cutoff, as described
in the previous section.

For the 1H shifts, the agreement of our values with both
Gaussian and experiment is in general very good. Our numbers
essentially coincide with the experimental ones up to a
maximum difference of about 0.6 ppm which is comparable to
the error of Gaussian and that of the MPL approach. The
difference between the full and the approximate calculation is
negligible except in the presence of strongly overlapping
delocalized orbitals, as in C6H6. Thus, for a system containing
π-electrons, it is a good practice to choose the same virtual cells
for all π-orbitals.

The difference between our results and Gaussian are relatively
small, except for C6H6 and C2H2. Considering the use of
different basis sets and the different methodology of the
calculation, we find a satisfactory overall agreement.

The differences with respect to the MPL method are mostly
due to different computational approximations. Using the same
cutoff (70 Ry) and the same level of theory (LDA) as Mauri,
our results agree up to 0.3 ppm.

Concerning the13C-atoms, the agreement is still good but
less satisfactory. Here, the limits of the approach become
apparent, in particular of the frozen core approximation. The
rigid additive correction for the pseudopotential is not able to

reproduce the different hybridization states quantitatively. A
change in the coordination induces an error of about 20 ppm.
The approximation of neglecting∆j in the current density
accounts for an error of typically less than 15 ppm. However,
the shifts still compare well to experiment, especially between
similar chemical environments. There, the relative error is only
a few ppm. Again, our method has an accuracy comparable to
the other ones.

C. Magnetic Susceptibilities.The magnetic susceptibility,
eq 5, is a byproduct of our calculation and can be obtained
almost for free. The isotropic molar susceptibilities of our test
molecules are presented in Figure 7. They have also been
extrapolated to infinite cutoff. Experimental values are taken
from ref 30.

As in the case of the chemical shifts, we obtain a good
agreement with existing theoretical methods and experiment.
The only molecule where the susceptibility is not as accurate
is benzene. Again, this reflects the difficulties of density
functional theory in describing delocalized orbitals with high
accuracy.

The calculation ofø also suffers from the use of pseudopo-
tentials. The contribution of the core electrons to the magnetic
bulk susceptibility is not considered. This approximation is valid
for light elements, but would fail for nuclei with spatially
extended core electrons.5

The comparison between the full and approximate calculations
shows that for the magnetic susceptibility, neglecting∆j has a
maximum effect of 2 cm3/mol, which can safely be ignored.
Again, the exception is benzene, where the contribution of eq
23 accounts for a deviation of 10 cm3/mol.

VIII. Periodic Systems

A. Liquid Water. In simulations of bulk water, periodic
boundary conditions are used in order to minimize finite size
errors and to eliminate any surface effects. A certain number
of water molecules in a large unit cell is periodically repeated
in space.

For such a periodic system, there are no quantum chemical
calculations, since the conventional IGLO and CSGT imple-
mentations cannot be applied to systems under periodic bound-
ary conditions. A comparison is only possible with experiment
and with the recently published MPL method. In Figure 8, a
direct comparison is presented for a given system. It is a
snapshot taken from an ab initio trajectory of liquid water at

Figure 5. 1H NMR chemical shifts.

Figure 6. 13C NMR chemical shifts.

Figure 7. Magnetic susceptibilities in cm3/mol.
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room temperature and consists of 32 water molecules within
periodic boundary conditions.

The correlation with the shieldings obtained through the MPL
approach shows a satisfactory overall agreement. The distribu-
tion of the shift values is very similar, although some of the
individual shieldings differ significantly. The maximum dis-
crepancy is about 2 ppm, which can be explained through the
different approximations assumed in the two methods.

The gas-to-liquid shift of water resulting from a statistical
analysis of a longer trajectory (9ps)31 of liquid water is shown
in Table 1. The experimental values are taken from ref 32.

As in the recently published calculation by Pfrommer et al.,18

the gas-to-liquid shiftsδ(1H) andδ(17O) of water (Table 1) are
well reproduced. The hydrogen shift turns out to be closer to
experiment than that of oxygen. This is not surprising, because
in the frozen core approximation, our pseudopotentials cannot
take into account the changes of the electronic structure in the
core region.

B. Diamond under Pressure.In a previous study,15 Mauri
et al. calculated the carbon chemical shifts of diamond in
function of pressure. Translating this pressure to molar volumes,
they find that the carbon shielding is linear in the volume per
atom, with a proportionality factor of 3.44 ppm/a.u.

To check the reliability of our method in a true crystal, we
repeat this calculation using a cubic supercell of 64 carbon
atoms. The results are shown in Figure 9. The dependence of
σC on the atomic volume yields 3.4 ppm/a.u.3, which is very
close to the value found by Mauri.

An analysis of these results is beyond the scope of this work.
We refer the reader to the discussion by Mauri et al.15

C. Contribution of ∆j. In order to estimate the influence
the neglected current∆j in the case of a periodically repeated
system, we have calculated its contribution to the1H shift in
two infinite polymer chains with different hybridization, (CH2)n

and (CH-CH-O)n. The dependence of the orbital corrections
∆σk

H on the distance of the orbital’s center of charge to the
proton is shown in Figure 10. Only the nearest orbitals have a
significant contribution, and there is a partial cancellation.

When summing over∆σk
H, the total error is about-0.5 ppm

for (CH2)n and-1.0 ppm for (CH-CH-O)n. This is about the
same as that for the isolated molecules (see Figure 5), and stays
within the global accuracy of the calculation.

In the diamond system, the same calculation yields a total
error of 28 ppm for the carbon shielding, due to the proximity
and the mutual overlap of the orbitals. The correction due to
∆j is found to be almost constant with respect to the cell volume,
its maximum variation is(1.5 ppm. This is another case in
which relative shieldings are more accurate than absolute ones.

IX. Conclusion

To recapitulate our approach, the perturbation Hamiltonian,
eq 9, which contains the new orbital-dependent position operator
(Figure 1), is applied to each localized orbital in its own virtual
cell. The first-order perturbation wave functionsæ(1) are then
obtained variationally through the minimization of the second-
order energy functional, eq 33, following ref 12. The total
electronic current density is computed as the periodically
repeated sum of all orbital currents obtained from the first-order
perturbation wave functions by eq 15. This current leads to the
chemical shifts and the magnetic susceptibility through eqs 1
and 5.

The results shown in sections VII and VIII show clearly that
the technique presented in this work can be used with good
accuracy for amorphous as well as periodic systems.

Figure 8. Direct comparison MPL methodsthis work.

TABLE 1: 1H and 17O Gas to Liquid Shifts

δliq(1H) [ppm] δliq(17O) [ppm]

this work 4.1 30
MPL method 5.8 37
experiment 4.3 36.1

Figure 9. Dependence ofσC on the volume per atom.

Figure 10. Error in the1H shift due to the neglected orbital currents
∆j k in infinite linear polymers as a function of the distance between
the orbital’s center of charge and the proton.
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The practical advantage over the existing formulation for
periodic systems by Mauri6 is the computational effort, which
can be significantly smaller. For systems that can be described
through a very small primitive cell, like defect-free crystals,
we would have to use a supercell technique to obtain sufficiently
localized Wannier functions. The MPL approach works with
the primitive cell only, making it much more efficient.

However, for systems that in any case require a large unit
cell, our computational effort is typically considerably smaller.
The computer time needed to calculate a system of 32 water
molecules in the liquid state atF ) 1 g/cm3 is about six times
smaller compared to the MPL approach.33 This becomes
especially important in the combination with molecular dynam-
ics. In such a case, to obtain a good statistical average, the NMR
chemical shift has to be calculated for a large number of atomic
configurations (snapshots) out of the trajectory.

The method presented in this article is currently being applied
to a variety of systems, including biologically important
molecules, and provides a powerful tool to interpret experimental
results.
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