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A New ab-Initio Approach for NMR Chemical Shifts in Periodic Systems
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We present a new method for computing NMR chemical shifts and magnetic susceptibilities in extended
systems through an ab initio density functional perturbation theory approach. The method is applicable to
crystalline and amorphous insulators under periodic boundary conditions, as well as to isolated molecules.
The formalism exploits the exponentially decaying nature of localized Wannier orbitals. We have implemented
the method in the context of a plane wave pseudopotential approach. The results are in good agreement with
experiment and with calculations that use other theoretical methods.

I. Introduction in extended systems using periodic boundary conditiéhis
formulation is based on a magnetic field which is modulated in
space. To return to the experimental situation of a homogene-
ous field, the limit of infinite modulation wavelength is evalu-
ated numerically. This is done using a small, but finite
wavevector.

We propose an alternative method for extended systems in
%eriodic boundary conditions. We take advantage of the
exponential decay properties of localized Wannier orGifasd

Nuclear magnetic resonance (NMR) is one of the most
powerful experimental methods in structural chemistry. The
guantities extracted from NMR spectra, in particular chemical
shifts, are widely used to characterize the chemical environment
of individual atoms. Coordination numbers, bond types, and
even bonding distances and angles can be obtained by analyzin
the resonance lines of the nuclear spins. Many empirical rules

exist to relate chemical shifts to these properties, but they fail treat these localized orbitals as virtually isolated. For the gauge

whenever subtlg .q.uantum effects are |n.volveo!. problem, a particular variant of the CSGT method mentioned
Thus, the ab initio calculation of chemical shifts has become 5,4 is adapted to our situation and applied to these localized

more and more popular, and over the years, many methods have, itals.

been developed in the quantum chemistry community to perform e jmplementation we present is based on density functional

such computations. A good review of the various approaches yheqry (DFT9-11 in combination with gradient-corrected ex-

and recent developments in this field is given in ref 1. One ¢pange correlation energy functionals. We use a pseudopotential

major problem that appears in these calculations is the choicepane wave representation of the electronic structure in the

of the gauge. While being in principle a cyclic variable, gauge fnzen core approximation. This allows the efficient calculation

can significantly affect the results in an actual calculation. To ¢ large systems and, in combination with molecular dynamics,

minimize this effect, several solutions have been proposed: in good statistical sampling.

the GIAO method (gauge-including atomic orbiysone ™ The resuits agree well with the existing calculations as well

transforms the gauge of the basis set functions to the position ;¢ \ith experiment.

of their nuclei, whereas in the IGLO method (individual gauges

for localized orbitald), the gauges of the final wave functions || chemical Shifts and Susceptibilities
are transformed to their centers of charge. The CSGT method o . ) .
(continuous set of gauge transformatifnginally defines a When a magnetic field is applied to a medium, it induces a

gauge which depends on the position where the induced currengurrent due to the modification of the electronic ground state.
is to be calculated. This electronic current distribution induces an additional inho-

However, there is another issue that restricts the applicability M09eneous magnetic field. The chemical shift tensor is defined

of the existing implementations of these methods to isolated as the propor_tlonallty fa?“’f between thefllnduced and the
systems. The Hamiltonian, which represents the magnetic field, externally applied magnetic field at the positions of the nuclei:
contains the position operator. In an extended system, which ind
would typically be treated under periodic boundary conditions, o(R) = BB_(R)
this operator is ill-defined. In particular, this position operator aBe
and therefore the perturbation Hamiltonian operator do not have
any periodicity, as would be required for periodic boundary The induced field is determined by the total electronic current
conditions. j(r) through

Recently, a new formalism has been presented which allows
the calculation of chemical shifts and other magnetic properties B"Y(r) = %fd%'

)
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approach the system is treated under periodic boundary condi-lll. The Gauge Origin Problem

tions, the current density will be periodic and we can calculate

eq 2 in reciprocal space from the Fourier transform of the
current:
B"(G = 0) = o1 ~— x | (G) ®)
|G|
TheG = 0 component of the field depends on the bulk magnetic
susceptibility tensory, and the shape of the sample:

B"YG = 0) = k y B™ (4)

In the case of a spherical system, the prefact given byx
= 2/3. The bulk susceptibilityy can also be expressed as a
function of the orbital electronic current as

_1“0 ) 3 .
X_EaBEthQd rroxj(r)

(®)

where the integral is done over one unit cell of volu@eA

single cell is sufficient since the integral is invariant under

translations of any lattice vect®, because of
jr+Ry)=j(r) (6)

and

Jod¥rjr)=0 (7)

The current density, eq 12, written in terms of the orbital
contributionsjy, can be separated into the so-called dia- and
paramagnetic terms:

= Z ()= Z i + i)
sdyy _82 N0 y2
) == ACIgO)

iR = 2 @IpI M|+ P T pligP0 (13)
Both contributions individually depend on the gauge, whereas
the total currentj is gauge-independent. However, the two
contributions are large numbers and have opposite signs. For
our choice of the vector potential, eq &(r) is linear in the
gauge originR. Therefore, the diamagnetic currejtﬂtgrows
linearly in R, and;jf must compensate for this in order to fulfill
the invariance of the total current.

Thus, for large distances — R|, the current densityresults
from the cancellation of two large terms, making the actual
calculation rather challenging. In a computer simulation using
a finite basis set, the gauge invariance jofs no longer
numerically verified.

Over the years, many techniques have been developed to
minimize this problem for isolated molecul&s' Our goal is
to calculate magnetic properties in a periodic system. In this

Therefore, the integral over the complete sample can be writtencontext, the probably most natural approach is the so-caRed “
as the sum of integrals over unit cells, and all these integrals = r” variant of the CSGT methotiFor each point’ in space,

are equal. The molar susceptibility is relateg tihroughy ™ =
QN y with the Avogadro numbeN, .

the current density is calculated with the gauge orRgiheing
set equal ta'. This method makes the diamagnetic part vanish

The standard procedure to obtain the orbital electronic current analytically:

densityj is perturbation theory. The field is represented by a
vector potentialA satisfyingB = V x A(r). A typical choice
for A in the case of a homogeneous magnetic field is

Amz—%a—mxs ®)

with a cyclic variableR, the gauge origin. The effect of this
additional degree of freedom will be discussed in Section Il

The perturbation Hamiltonians at first and second order in the

field strength are given by

HE =2 pAQ) ©)

H®=£iMOAU) (10)
2m

with the momentum operat@rand the charge and massn of
the electron. The first-order perturbation gives rise to a

jxry=0 (14)

such that cancellations of large numbers no longer occur.
In practice, the current is computed as

. , e r ' r r X
B = @I(pIr O] + [r' O [p) I3 PO
r' x |gppd-B (15)

Here, |¢,POand |gf0are the first-order perturbation wave
functions for the special perturbation Hamiltonians:

#PO=H Y =r xp (16)

k= H®=p (17)

This formulation avoids actually calculating distinct wave
functionsg® for each point’ in space. Denoting the perturba-

correction in the electronic ground state with respect to the tion theory Green’s function (see also Section V for details):

unperturbed system:

(1)

¢ =¢"+By (11)

This correctionp® is responsible for the induced current, which
can be obtained as

i) =§A(r')|<p‘°>(r')|2 +

2 @ [pIr' M| + 1’0 plig ™0 (12)

Gy =—(H © O — @ﬁonH (0)|€0|(0)Eﬂ_l (18)

we can formally express the first-order perturbation wave
functions for an arbitrary perturbation opera@ras

gy O= Z Gy Olg0 (19)

whereO is eitherp orr x p. By expanding eq 19 in the basis
of the unperturbed unoccupied orbitals, one would obtain the
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well-known sum-over-states expression for the first-order FIGURES
perturbation wave function.

We do not use this Green'’s function formulation in the actual
calculation, but rather perform a variational energy minimization
(see Section V). Equation 19 serves only as a compact notation
to obtain a closed expression for the current density:

Con — S O e fu— ©
Jr) =—Zmok |(pIr"[B'| + |r' (' |P)[Gyg T x plep - e
m o 0 T L (%)
Gy ' x plg; 0B (20) Figure 1. Two localized orbitalsP,(x), Wy(X) with specific position
operatorg (), ro(X).
In this formulation, it becomes apparent that any simultaneous
translation of the relative origin for the operatoaind the gauge  problematic. The position operator which figures in the pertur-
R = r' automatically cancel each other out. In particular, the bation Hamiltonian, eq 9, is not well defined for an infinite
current is invariant under arbitrary orbital-specific translations system.
d: A possible solution to this problem has been proposed and
applied by Mauri et at%1518 (MPL). They replace the
homogeneous magnetic fieRlby a modulated ond3(r) = Bg
cos g-r, with a finite wavevectorg. Consequently, also the
©) , ©) perturbation Hamiltonian becomgsperiodic and therefore well-
Plg "= Gy (r' —d,) x ple 0-B (21) defined for an extended system. The physically relevant case
B(r) = Bo is obtained by doing a numerical differentiation with
This formulation looks somewhat similar to the well-known g small, but nonzero value forand—g, and the response wave
IGLO gauge transformation (individual gauges for localized functions have to be complex even in theonly sampling of
orbital$®), but it is not the same. Our physical gauge is always the Brillouin zone.
theR = r" version of the CSGT method. However, this gauge  However, the method shows that it is feasible to compute
still leaves the freedom to translate the coordinate system R chemical shifts of periodic and amorphous systems with
individually for each orbital, a_ccordin_g to eq 21. This will turn good accuracy using a pseudopotential plane-wave approach.
out to be useful in the following section. We propose a different approach. Instead of transforming the

A st(alghtforward.appllcanon O.f €q 21. WOUI.d be too homogeneous magnetic field to a periodic one, we define a new
expensive. In fact, it would require one inversion of the periodic position operator

Hamiltonian per real space mesh poiht Such an operation . . . .
. : . We first localize the wave functions by means of a unitary
has approximately the cost of a total energy calculation, which oo - - h
rotation in the occupied subspace. This is a technique well-

leads to a prohibitive computational effort. known in quantum chemistry, where it is used to determine the
We note however, that the second ternjagan be rewritten location and the nature of chemical bonds. The rotation is chosen
as : . X Lo
such that the spatial extension of the wave functions is minimal,
yielding so-called maximally localized Wannier functiorEhe

e
__Z E}aﬁo)|(p|r"| + |r'OE'|p)Gy, (r' — d,) x p|¢|(0)g|3 = extension is characterized by the second momenof the
m orbitals:

() =EZ®ﬁ°>|<p|r"| + PO [p)[Gy (r — d)
m

e
_ (0) ' ' 1 ’ r__ (0)
—Z B O|(p|r' D8] + |r'O8|p)(r' — dy) x Gplg@EB + A= Z@kllecﬂkﬂ— Bl ol (24)
Aj(r') (22)

In a periodic system, special care is required to define the
where position operator properly. A solution to this problem in terms
o of a Berry phase approatthas been given by Mazari et #l.
Sy (0) TR ey _ A practical scheme to calculate maximally localized Wannier
A = mZ@)k [(pIr '] -+ |r"(T"|P)Gy (dy — ) x orbitals has recently been presented by Berghold #tlatan
be shown that in an insulator, the resulting localized wave
functions decay exponentialfylf the unit cell is chosen such
_ i that the lattice parameter is larger than the decay length, the
The evaluation of the first term of eq 22 can be done at the grpjta| is significantly different from zero only within a limited
computational cost of one total energy calculation, witij region of the cell, and it practically vanishes everywhere else.
requires one such calculation per electronic skate The next step is to assign individual virtual cells to these
_Atfirst sight, the sum\j = 3 Aji seems to be equal to zero, \yannier orbitals. The virtual cells are chosen such that for the
since the inner operator Is antisymmetrickirl. BUI, since the ,_corresponding wave function, the cell walls are located in that
momentum operators in eq 23 do not commute with the Green's .o i of space where the orbital density is close to zero over

function, Aj does not vanish unless alj are equal. However, o cortain range. Then, the position operator is defined normally

we shall show that in most circumstancag can be neglected. running from—L/2 to +L/2 inside the virtual cell. At the walls,

it makes a smooth transition back frofiL/2 to —L/2, yielding

a saw-tooth shape (see Figure 1). This jump is not sharp in
The formalism described so far is straightforward to use in order to avoid components of very high frequency in the

isolated systems, whereas the extension to periodic systems i®perator. As a consequence of this definition, the position

ple”CB (23)

IV. The Position Operator Problem
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operator now matches the periodic boundary conditions, since EJD(kO)MOf(l)D"' Ejo(kl)|¢(k°)D= 00k (27)
it is identical in every virtual cell and all its replica.
A_ga’m, we wish to stress that we have not transformed the 1g is achieved by imposing a general orthogonality condition
orbital's gauge. Had we done so, we would have found p he first-order perturbation wave functions:
additional terms in the perturbation Hamiltonian and the wave
function orthonormality relations, as in the IGLO method. The ). (1)
crucial difference is that we do not use individual orbital gauge [Pl =00kl (28)

origins; the gauge is alwayRR‘= r"". Instead, we define an - . . . .

individual reference system for bothandR simultaneously The variational energy expression, eq 25, is valid for canonical

as described by the relative origids in eq 21 ’ orbitals, i.e., eigenfunctions of the KS Hamiltonian. The
) generalization to an arbitrary set of wave functions spanning

The problem that arises for this construction is that the new - : . e
. the occupied subspace is straightforward. The only modification
operator has a completely unphysical shape around the borders

of the virtual cell, where it makes its jump (at= nL). But by 's that the KS energies ml.JSt_be replaced by the matrix
. . . . __elements of the KSHamiltonian:

choosing the virtual cells as described above, the unphysical
transitions lie in those regions of space where the wave function
vanishes. As a consequence, the problematic part of the operator
is only applied where it has no effect anyway.

Hence, the saw-tooth shape of the position operator as
indicated by Figure 1 is a reasonable approximation as long as

6 Ay = IH Q)20 (29)

Then, eq 25 becomes

the wave functions are sufficiently localized. E@= Z@(kl)lH O — Al Z[@(kl)W D0+
However, this represents a certain restriction for this method.

We require that the decay length be significantly smaller than 1 O%E, [

the lattice constant of the simulation box, as mentioned above. lfp(ko)lH (l)|§0(kl)Eﬂ + - f dr ¥ —— n(l)(r)n(l)(r')

Only in such a case can the virtual cell be chosen with its borders 2 on(ryon(r’)

in a region of vanishing density. It follows that for a system (30)

with truly delocalized orbitals, like a metal, our approach is

not applicable. In such a system, the decay of the Wannier The second-order energy is variational in the first-order
orbitals is only algebraic, and the necessary cell size would far Perturbation wave functions, under the orthogonality constraint
exceed the computationally tractable volume. One would have of q 28:

to resort to the MPL approach, using a k-point sampling of the o

Brillouin zone. OE 0 (31)

) (p(l)

V. Density Functional Perturbation Theory

¢ In our case, the perturbation is a magnetic field. The energy
functional simplifies considerably because the first-order density
analytically vanishes everywhere. The reason is that the
m perturbation Hamiltonian and the first-order wave functions are
purely imaginary, and thus, the two terms in eq 26 cancel each
other out. The matrix element of the magnetic perturbation
Hamiltonian, eq 9, in the position representation is given by

We have implemented our method in the framework o
density functional perturbation theory (DFPT) using a recently
published variational approaéh.The derivation has strong
analogies with other variational schemes used in quantu
chemistry. In particular, we note the similarity of our approach
to the stationary perturbation theory by Kutzelrdigghich is
used in the IGLO implementation. We start from a functional
for the second-order energy of the system which is variational

in the first-order perturbation wave functiogsb: mH Y o= 2—2630 —r')(r—R)x BV (32)
E@ = ZE’JO;(})IH © — OB Z[ED(;(DIH 1O It is purely imaginary, so that with real wave functions and a
neccessarily real energy, eq 25, the first-order orbiwﬂ’é
1 2EHXC © must be purely imaginary, too. Hence, the first-order density,
Eo(ko)lH (1)|(,0(k1)q1 + —f dr ¥’ ——— n(l)(r)n(l)(r') eq 26, vanishes analytically for magnetic perturbations, and the
2 on(r)on(r’) energy functional, eq 30, simplifies to
(25)
. . . . E® = Z@E”H © O — lkllQDfl)[H_ Z[@EHH (l)|(/7f<o)D+
In this expression, the operatdr@ is the traditional KS ground-
state Hamiltonian with its eigenvaluef’. H @ is the first- BOH O07 (33)
order perturbation Hamiltonian affgl,. is the Hartree, exchange
and correlation energy functional. The stationarity condition on the energy, eq 29, can be written

The wave functiong© and¢® are the zero and first-order
expansions of the KS orbitals in powers of the perturbation
arameter, respectively. They also define the first-order density:
P peciivel: They Y > (@0~ algl"D=—H g0 (34)

as an inhomogeneous system of coupled equations f@pfjhe

n(r) = eri“’(r)co‘k”(r) + g (26)
This equation could be formally inverted using Green’s function,
eq 18. In our implementation, however, eq 34 is solved directly
The orthonormality of the total wave functions, expanded to using a conjugate-gradient minimization algorithhits com-
first order in the perturbation, yields putational cost is essentially equal to that of a total energy
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Figure 2. Convergence ofH shielding with cutoff. Figure 3. Convergence of*C shielding with cutoff.

calculation. No wave functions of unoccupied states are required, 325' L
in contrast to sum-over-states techniques. 31 E
— Rl v ]

VI. Pseudopotential Correction 30; PP 2 7 4 ]
Our implementation is based on a representation in plane Hzgw E
waves. We model the interaction between valence and core ;E,_ 28F OCH =
electrons by pseudopotentials. Therefore, no core orbital is taken & v c lfl 1
into account, and the valence wave functions have an incorrect T 27 NENCHCIEE
shape in the core region. The chemical shift is extremely g PEEE—wm—5 5 = & HO
sensitive to precisely that region of space, because the interaction o o CH, 1
between nuclear spin and current is proportional t8. Tthus, ZSW o CH, 7
it is not clear a priori whether a pseudopotential implementation o4f o GgH 3
can give meaningful results at all. £ ]
Often, the contribution of the core orbitals to the chemical - R - Sy S—

shift is almost constant with respect to the chemical environment 4.0 8
. S 10°xQ " [au. 7]
of the atom. In the recent investigation of Gregor e#4it has ) o ]
been shown that this property can be exploited to correct for Figure 4. Convergence ofH shielding with cell volume.
the frozen-core approximation. A simple additive constant is
sufficient to reproduce the all-electron shieldings satisfactorily =~ The extrapolation of the chemical shift of the isolated

in many cases. molecules to infinite cutoff Ec‘l — 0) shows that a good
o convergence is already reached at a typical value ef9T0Ry.
VII. Application to Isolated Molecules The convergence error is in the range of about 0.2 ppm for
A. Convergence of the Chemical ShiftOur method has ~ hydrogen and a few ppm for carbon. . _
been implemented in CPMBS,a DFT pseudopotential suite of Another approximation is the finite size of the unit cell in

programs based on a plane-wave (PW) representation. Using &2ur calculation. To check the influence of the interaction
supercell technique, we have applied our method to isolated between a molecule and its periodic replica, we have also studied
molecules to validate the approach and the implementation. the convergence with the cell volume with a PW cutoff fixed
For all molecules, the experimental geometries have beenat Ec = 70 Ry (Figure 4). Obviously, the standard cell size of
used?* As discussed in section VI, the carbon shifts need to be (20 auj mentioned above is enough to eliminate the influence
corrected for the core contribution through a semiempirical Of neighboring cells.
additive constant. The constant was taken to be the difference B. Comparison with Experiment. We compare our extrapo-
between our valence-electron shielding and the experimentallated results for a representative set of small organic molecules
shielding?® for tetramethylsilane (TMS). We use pseudopoten- With the values calculated with the Gaussian 94 pacRégéth
tials of Goedecker et &k with a BLYP gradient corrected  the MPL result¥and with experiment (Figures 5and 6). In ref
functional26-27 and a unit cell of size (20 ati) 15, only carbon shifts relative to TMS are given. They were
As a first test, we have investigated the convergence converted to an absolute scale using the experimental value for
properties of our results with the plane wave cutgff This TMS o%ys = 188.1 ppm. Experimental shieldings have been
cutoff determines the size of the basis set, which is mathemati- taken from ref 29. The Gaussian calculation was done in DFT
cally complete atE; — . At standard values of 5970 Ry, using the CSGT methotlthe BLYP exchange-correlation
this limit is not reached, even within the frozen core approxima- functiona,fé2”and a 6-311G(3df,3pd) basis set.
tion. However, the electronic structure is usually well reproduced In the case of an isolated system, we can perform the
by that point. The convergence of the chemical shifts with the calculation imposing that the virtual cells are all equil=<€ d
wave function cutoff is shown in Figures 2 and 3 for a 0Kk, I), which makesAjx = 0 in eq 23. In Figures 5 and 6, this
representative set of small organic molecules in the gas phaseexact calculation is compared with the approximatigp = 0
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Figure 5. *H NMR chemical shifts. Figure 7. Magnetic susceptibilities in cimol.

2001 T T ' T IC IH '0 ] reproduce the different hybridization states quantitatively. A
L 2 6.~‘c'>' i change in the coordination induces an error of about 20 ppm.
180+ L0 A The approximation of neglectingj in the current density
- O F ] accounts for an error of typically less than 15 ppm. However,
© 160~ C.H . ¥ n the shifts still compare well to experiment, especially between
8 140'_ 2'2 CH4_‘ similar chemical_environments. There, the relative error is only
| | + ’ | a few ppm. Again, our method has an accuracy comparable to
E 120 2. A the other ones.
g L e - C. Magnetic Susceptibilities. The magnetic susceptibility,
“6 100—C H - eq 5, is a byproduct of our calculation and can be obtained
r 66 -7 0 Gaussian ) almost for free. The isotropic molar susceptibilities of our test
80_‘ $¢ x this work (full calculation) molecules are presented in Figure 7. They have also been
sol- x“*‘.02H4 + this work (Aj=0) i extrapolated to infinite cutoff. Experimental values are taken
L ...~o o) & MPL method i from ref 30.
408 ——L o Lo 1 b 1 L As in the case of the chemical shifts, we obtain a good
40 60 80 1000 120 140 160 180 200 agreement with existing theoretical methods and experiment.
o [ppm] - exp The only molecule where the susceptibility is not as accurate
Figure 6. 13C NMR chemical shifts. is benzene. Again, this reflects the difficulties of density
functional theory in describing delocalized orbitals with high

accuracy.
The calculation ofy also suffers from the use of pseudopo-
ntials. The contribution of the core electrons to the magnetic

in the case of different virtual cells, wheok = d,. In both
cases, the results are extrapolated to infinite cutoff, as describec{e

in the previous section. bulk susceptibility is not considered. This approximation is valid
1 . , .
G For 'the HdSh'ftZ’ 'the ?grgement OT our valudesOW|th boéh for light elements, but would fail for nuclei with spatially
aussian and experiment is in general very good. Our numbers, .. ~o " 0o alectrofis.

essentially coincide with the experimental ones up to a The comparison between the full and approximate calculations

maximum difference of about 0.6 ppm which is comparable to ; S .
the error of Gaussian and that of the MPL approach. The ShOV.VS that for the magnetic susc_ept|b|l|ty, neglectm_gﬁas a
maximum effect of 2 cfimol, which can safely be ignored.

difference between the full and the approximate calculation is Again, the exception is benzene, where the contribution of eq

negligible except in the presence of strongly overlapping o
delocalized orbitals, as ingBs. Thus, for a system containing 23 accounts for a deviation of 10 &mol.

m-electrons, it is a good practice to choose the same virtual cells
for all w-orbitals.

The difference between our results and Gaussian are relatively A, Liquid Water. In simulations of bulk water, periodic
small, except for eHs and GH,. Considering the use of  boundary conditions are used in order to minimize finite size
different basis sets and the different methodology of the errors and to eliminate any surface effects. A certain number
calculation, we find a satisfactory overall agreement. of water molecules in a large unit cell is periodically repeated

The differences with respect to the MPL method are mostly in space.
due to different computational approximations. Using the same  For such a periodic system, there are no quantum chemical
cutoff (70 Ry) and the same level of theory (LDA) as Mauri, calculations, since the conventional IGLO and CSGT imple-
our results agree up to 0.3 ppm. mentations cannot be applied to systems under periodic bound-

Concerning the’*C-atoms, the agreement is still good but ary conditions. A comparison is only possible with experiment
less satisfactory. Here, the limits of the approach become and with the recently published MPL method. In Figure 8, a
apparent, in particular of the frozen core approximation. The direct comparison is presented for a given system. It is a
rigid additive correction for the pseudopotential is not able to snapshot taken from an ab initio trajectory of liquid water at

VIII. Periodic Systems
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room temperature and consists of 32 water molecules within

periodic boundary conditions.
The correlation with the shieldings obtained through the MPL

approach shows a satisfactory overall agreement. The distribu-

tion of the shift values is very similar, although some of the
individual shieldings differ significantly. The maximum dis-

crepancy is about 2 ppm, which can be explained through the

different approximations assumed in the two methods.

The gas-to-liquid shift of water resulting from a statistical
analysis of a longer trajectory (985)pf liquid water is shown
in Table 1. The experimental values are taken from ref 32.

TABLE 1: 'H and 70O Gas to Liquid Shifts
Biig(*H) [ppm]

0ig(*"0) [ppm]

this work 4.1 30
MPL method 5.8 37
experiment 4.3 36.1

As in the recently published calculation by Pfrommer etl.,
the gas-to-liquid shift®(*H) andd(*’O) of water (Table 1) are
well reproduced. The hydrogen shift turns out to be closer to

experiment than that of oxygen. This is not surprising, because
in the frozen core approximation, our pseudopotentials cannot
take into account the changes of the electronic structure in the

core region.
B. Diamond under Pressure.ln a previous study® Mauri
et al. calculated the carbon chemical shifts of diamond in

function of pressure. Translating this pressure to molar volumes,

they find that the carbon shielding is linear in the volume per
atom, with a proportionality factor of 3.44 ppm/a.u.

To check the reliability of our method in a true crystal, we
repeat this calculation using a cubic supercell of 64 carbon
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Figure 10. Error in the'H shift due to the neglected orbital currents
Ajk in infinite linear polymers as a function of the distance between
the orbital’'s center of charge and the proton.

When summing overE', the total error is about 0.5 ppm
for (CHp), and—1.0 ppm for (CH-CH—O0),. This is about the
same as that for the isolated molecules (see Figure 5), and stays
within the global accuracy of the calculation.

In the diamond system, the same calculation yields a total
error of 28 ppm for the carbon shielding, due to the proximity
and the mutual overlap of the orbitals. The correction due to
Aj is found to be almost constant with respect to the cell volume,
its maximum variation ist1.5 ppm. This is another case in
which relative shieldings are more accurate than absolute ones.

IX. Conclusion

To recapitulate our approach, the perturbation Hamiltonian,

atoms. The results are shown in Figure 9. The dependence ofeq 9, which contains the new orbital-dependent position operator

o€ on the atomic volume vyields 3.4 ppm/&,uwhich is very
close to the value found by Mauri.

An analysis of these results is beyond the scope of this work.
We refer the reader to the discussion by Mauri €fal.

C. Contribution of Aj. In order to estimate the influence
the neglected curremtj in the case of a periodically repeated
system, we have calculated its contribution to theshift in
two infinite polymer chains with different hybridization, (GH
and (CH-CH—-0),. The dependence of the orbital corrections
Ao} on the distance of the orbital's center of charge to the

(Figure 1), is applied to each localized orbital in its own virtual
cell. The first-order perturbation wave functiopé? are then
obtained variationally through the minimization of the second-
order energy functional, eq 33, following ref 12. The total
electronic current density is computed as the periodically
repeated sum of all orbital currents obtained from the first-order
perturbation wave functions by eq 15. This current leads to the
chemical shifts and the magnetic susceptibility through egs 1
and 5.

The results shown in sections VII and VIII show clearly that

proton is shown in Figure 10. Only the nearest orbitals have a the technique presented in this work can be used with good

significant contribution, and there is a partial cancellation.

accuracy for amorphous as well as periodic systems.
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